
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1730
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Analysis of Verilog Modelling and Simulation of
Developed 16-bit and 23-bit LFSR Based Data
Scrambler and Descrambler for 2.5GT/s, 5GT/s

and 8GT/s Data Rate with Minimum Glitch
Monirul Islam, Rajibul Alam, Abdullah Al Hadi

Abstract— Verilog structured and simulation of data scrambler and descrambler for noise free and secure data communication has been
presented here. This paper analyses the data scrambler and descrambler considering 2.5 GT/s, 5 GT/s and 8 GT/s data rate. Transmitted
bits have some certain characteristics which have effects on the error rate and the achievable bandwidth. This characteristic includes (1)
ratio’s of 0’s and 1’swithin a data byte and (2) maximum no’ of clock periods between bit transitions (i.e. 1 - 0 and vice versa). These
characteristics are maintained and developed using an efficient scrambler. Scrambler increase the ability of a receiver performing clock
recovery or deriving improved bit synchronization, helps distinguished data bit sequences, allows simple detection of byte and word
boundaries. The performance results of the simulation have been found without any delay and are in conformity with theoretical
observations.

Index Terms— Data Rate, Descramble, EMI, Glitch, LFSR, PHY, Scrambler.

—————————— ——————————

1 INTRODUCTION
HE development of new technologies bring the evolution
of new and sensitive communication capabilities in the
form of Internet, electronic banking, electronic mail, pay

channel television, cable television, mobile telephone, satellite
phone, broad band services, e-journals, tele-medicine and
above all several forms of electronic communications. Howev-
er, any forms of electronic communications are vulnerable to
interference [1, 2].

In telecommunications and recording, a scrambler is a de-
vice that manipulates a data stream before transmitting [1,2].
The manipulations are reversed by a descrambler at the re-
ceiving side. Scrambling is widely used in satellite, radio relay
communications and PSTN modems. A scrambler can be
placed just before a FEC coder, or it can be placed after the
FEC, just before the modulation or line code. The pseudo-
noise (PN) key generation is of paramount importance for any
secure communication system [2]. PN sequences based on
Linear Feedback Shift Registers (LFSR) and non linear combi-
nation based implementations are simplest to give moderate
level of security.

The purpose of the scrambler is to eliminate a repetitive
pattern on the data stream. A repetitive pattern on a 2.5 Gbps
data stream (such as 10101010) can generate significant EMI
noise. By scrambling the data stream repetitive patterns are
eliminated and thus spread the EMI energy over a broader

range in the spectrum [8]. This scrambling technique is often
referred to as spread spectrum and is an effective way of whit-
ening the noise.

The 16-bit Scrambler/De-scrambler allows scrambling and
de-scrambling of two 8-bit symbols in parallel. It is intended to
be used with PHY chips using 16-bit PIPE interface.

2 THEORITICAL ANALYSIS
Electromagnetic interference or (EMI) is disturbance that af-
fects an electrical circuit due to either electromagnetic induc-
tion or electromagnetic radiation emitted from an external
source [6]. The disturbance may interrupt, obstruct, or other-
wise degrade or limit the effective performance of the circuit.
These effects can range from a simple degradation of data to a
total loss of data [7].

Integrated circuits are often a source of EMI. On Digital in-
tegrated circuits, important means of reducing EMI are scram-
bling [8]. At higher frequencies, usually above 500 MHz, traces
get electrically longer and higher above the plane.

Scrambler and descrambler are very commonly used in
PHY chips like Universal Serial Bus (USB), PCI Express and in
different protocols.

The scrambling function can be implemented with one or
many Linear Feedback Shift Registers (LFSRs). A linear feed-
back shift register (LFSR) is a delay line which feeds back a
logical combination of its stages to the input. On the Transmit
side, scrambling is applied to characters prior to the encoding.
On the Receive side, de-scrambling is applied to characters
after decoding [8].

16-bit LFSR –
For 2.5 GT/s and 5 GT/s data rates The LFSR implements

the following polynomial based on the encoder and decoder
scheme:

T

————————————————
• Monirul Islam is currently working as an ASIC Design Engineer in

Fastrack Anontex Limited in Dhaka, Bangladesh, PH-+8801918226190.
E-mail: monirul@fastrack-design.com

• Rajibul Alam is currently working as an ASIC Design Engineer in Fastrack
Anontex Limited in Dhaka, Bangladesh, PH-+8801715345075.
E-mail: rajibul.alam@fastrack-design.com

• Abdullah Al Hadi is currently pursuing masters degree program in energy
engineering and management in Instituto Superior Technico, IST, Lisbon,
Portugal, PH-+351969642762. E-mail: abdullah.al.hadi.bd@gmail.com

IJSER

http://www.ijser.org/
mailto:rajibul.alam@fastrack-design.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1731
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1)(34516 ++++= XXXXXG (1)
Scrambling or unscrambling is performed by serially

XORing the 8-bit (D0-D7) character with the 16-bit (D0-D15)
output of the LFSR.

The structure of scrambler/descrambler system is shown
in Figure I. It consists of 16 D flip-flops (D0-D15) for LFSR and
8 (D0-D7) for Input Data. At D3, D4, D5 in LFSR the input is
XORed with D15 value. With every clock cycle the Data and
the LFSR value is shifted right. After 8 cycle , Data Out started
to generate depend on the Data In. The initial value of the
LFSR is set to FFFFh.

23-bit LFSR –
The LFSR uses the following polynomial for data rate 8.0

GT/s or higher and is demonstrated in Figure II.
1)(258162123 ++++++= XXXXXXXG (2)

The scrambler/descrambler system in Figure II consists of

23 D flip-flops for LFSR. In each cycle the Data In is XORed
with the output of D22 flip-flop and thus generates the Data
Out. At D2, D5, D8, D16, D21, the input is XORed with the
output of D22. The seed value of the LFSR is dependent on the
usage of the LFSR in the chip. The seed values for modulo 8
are:

0: 1DBFBCh, 1: 0607BBh, 3: 18C0DBh, 4: 010F12h, 5: 19CFC9h,
6: 0277CEh, 7: 1BB807h

For modulo 8 scrambling the initial value proposed here.

If the lane number increases due to higher data rates the seed
values will be changed on the basis of the LFSR. For 130 bit
data stream the above mentioned LFSR produces secure 1’s
and 0’s trail.

The data is descrambled at the receiver using the inverse

of the scrambling function. The purpose is to generate a more
randomized content of 0’s and 1’s and generating a frequency
spectrum which more closely approximates a Gaussian distri-
bution.

3 RESULTS AND DISCUSSIONS
The analysis of the module is executed using modelsim and
quartus software tool. The simulation graphs and list are elab-
orated here.

Scrambler – The LFSR is advanced 8 serial clocks which

reduce the timing delay. For indicating the control bit a special
input k_code is used and for the ordered sets in the PHY chip
training_sequence is used. Input inbyte is a 8 bit value and the
following scrambled output outbyte list is given here sequen-
tially. In the case of k_code and training_sequence the output
will be unscrambled. Other cases Scrambling is done depend-
ing on the LFSR value.

Simulation results :

0 k_code = 0 training_sequence = 0 inbyte = 00000000

Fig.I. 16-bit LFSR based Scrambler / Descrambler

Fig.II. 23-bit LFSR based modulo 8 Scrambler / Descramble

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1732
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

outbyte = 00000000
20 k_code = 0 training_sequence = 1 inbyte =10111100
outbyte = 10111100
30 k_code = 0 training_sequence = 0 inbyte =10111101
outbyte = 01000010
40 k_code = 0 training_sequence = 0 inbyte =01011111
oubyte = 01001000
50 k_code = 0 training_sequence = 0 inbyte =10011101
outbyte = 01011101
60 k_code = 0 training_sequence = 0 inbyte =00011100
outbyte = 00011100
70 k_code = 0 training_sequence = 0 inbyte =11101100
outbyte = 11111000
80 k_code = 1 training_sequence = 0 inbyte =01011100
outbyte = 01011100
90 k_code = 0 training_sequence = 0 inbyte =01010101
outbyte = 11100111
100 k_code = 1 training_sequence = 0 inbyte =
00011100 outbyte = 00011100
110 k_code = 0 training_sequence = 0 inbyte =
01010101 outbyte = 10110010
120 k_code = 0 training_sequence = 0 inbyte =
10001100 outbyte = 10001110

130 k_code = 0 training_sequence = 0 inbyte =
10111100 outbyte = 10111100
140 k_code = 0 training_sequence = 0 inbyte =
10011100 outbyte = 01100011

150 k_code = 0 training_sequence = 0 inbyte =
10011100 outbyte = 10001011
160 k_code = 0 training_sequence = 0 inbyte =

10011100 outbyte = 01011100
170 k_code = 0 training_sequence = 0 inbyte =
10011100 outbyte = 10001000
180 k_code = 0 training_sequence = 0 inbyte =
10011100 outbyte = 00101110
190 k_code = 0 training_sequence = 0 inbyte =
10011100 outbyte = 01111011

De-scrambler – In the receiver side the function is applied
with the scrambled output as a input to inbyte .In the similar
way the descrmbled outbyte list is shown here. The output here
is the input of the scrambler.That means data is transmitted
and received with proper order.

Simulation results:

0 k_code = 0 training_sequence = 0 inbyte = 00000000
outbyte = 00000000
20 k_code = 0 training_sequence = 1 inbyte =10111100
outbyte = 10111100
30 k_code = 0 training_sequence = 0 inbyte =01000010
outbyte = 10111101
40 k_code = 0 training_sequence = 0 inbyte =01001000
outbyte = 01011111

50 k_code = 0 training_sequence = 0 inbyte =01011101
outbyte = 10011101
60 k_code = 0 training_sequence = 0 inbyte =00011100
outbyte = 00011100

70 k_code = 0 training_sequence = 0 inbyte =11111000
outbyte = 11101100
80 k_code = 1 training_sequence = 0 inbyte =01011100

Fig.III. Scrambled output in the transmitter

Fig.IV. Descrambled output in the receiver

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 1733
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

outbyte = 01011100
90 k_code = 0 training_sequence = 0 inbyte =11100111
outbyte = 01010101
100 k_code = 1 training_sequence = 0 inbyte =
00011100 outbyte = 00011100
110 k_code = 0 training_sequence = 0 inbyte =
10110010 outbyte = 01010101
120 k_code = 0 training_sequence = 0 inbyte =
10001100 outbyte = 10001110
130 k_code = 0 training_sequence = 0 inbyte =
10111100 outbyte = 10111100
140 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 10011100
150 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 01110100
160 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 10100011
170 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 01110111
180 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 11010001
190 k_code = 0 training_sequence = 0 inbyte =
01100011 outbyte = 10000100

4 CONCLUTION AND FUTURE SCOPE
Scrambling has no overhead, unlike block codes which always
add overhead bits to the data. In the higher data rates, 8 GT/s
or higher overhead is minimized using scrambling in the data
stream. The 23-bit LFSR used for higher data rates reduced the
overhead to approximately 1.54%. This implementation of the
verilog modeling of the scrambler requires fewer than 25 XOR
gates. Scrambling does not guarantee that a long run length of
0’s or 1’s does not occur but the probability of such a pattern
occurring is astronomically low and can be ignored if the
probability is well below the specified BER (BER = 10-12) of the
system. For Generation 4 data rate multiplicative scrambler
(23bit or higher) can be implemented in the protocol.

ACKNOWLEDGMENT
The authors wish to thank Fastrack Anontex Ltd. This work
was inspired from a Project work.

REFERENCES
[1] G.M. Bhat, M. Mustafa, Shabir Ahmad and Javaid Ahmad “VHDL

modeling and simulation of data scrambler and descrambler for se-
cure data communication” , Indian Journal of Science and Technolo-
gy , Vol.2 No. 10 (Oct 2009) ISSN: 0974- 6846

[2] Bhat, G. M and Ahmad W. “Reliable and Secure Data Transmission”.
Electronics Engineering, Vol. 68, No. 832, pp. 32-34, April 1996, Lon-
don, U. K.

[3] Standaert, F. Piret, G. Rouvroy, G and Quisquater J.J, “FPGA Im-
plementations of the ICEBERG Block Cipher”, in the proceedings of
ITCC 2005, vol 1, pp 556561,Las Vegas, Nevada, April 2005

[4] Wasim Ahmad (2001- 2002) Development of low-cost secure com-
munication techniques. AICTE (R&D) Project. Deptt. of Electronics
Engg., AMU, Aligarh

[5] PCI Express Base Specification Revision 3.0
[6] Based on the "interference" entry of The Concise Oxford English

Dictionary, 11th edition, online
[7] Sue, M.K... “Radio frequency interference at the geostationary orbit”.

NASA. Jet Propulsion Laboratory. Retrieved 6 October 2011
[8] “PCI Express 3.0 Frequently Asked Questions” PCI-SIG. Retrieved 23

November 2010
[9] David Robert Stauffer “High Speed Serdes Devices and Applica-

tions”
[10] MUNIR A. AL-ABSI “Flexible Digital Scrambler/De-Scrambler

System”, Proceedings of the 10th WSEAS International Conference
on CIRCUITS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp17-
21)

[11] K.Sam Shanmugam “Digital and analogue communication” John
Wily Sons Inc, Canada 1979

[12] Pere Daielson “A variable-length shift Register” IEEE Trans on
Computers, Vol. C-32 No 11. November 1982

IJSER

http://www.ijser.org/

	1 Introduction
	2 Theoritical Analysis
	3 Results And Discussions
	4 Conclution And Future Scope
	Acknowledgment
	References

